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CajunBot-II: Autonomous Vehicle for DARPA Urban Challenge 

1. Executive Summary 
CajunBot-II is a 2004 Jeep Wrangler Rubicon equipped with an INS/GPS for localization. It has 
is equipped with a variety of environment sensors, including SICK LMS LIDAR sensors, Alasca 
XT LIDAR sensors from Ibeo, stereo vision, and radars.  

The software system is decomposed into a collection of programs communicating via a 
blackboard supported by a layer of middleware.  Localization from the GPS and INS is improved 
by a Kalman filter based algorithm using a SICK LIDAR, and vehicle commands. Environment 
sensor data is fused using probabilities derived from the operating context. The mission is 
mapped into a series of maneuvers using the mission, vehicle state, and environmental 
information. A maneuver is applicable only on a path with a certain geometry. Execution of a 
maneuver takes into account the dynamic driving conditions. Human driving experiences are 
used to catalogue the maneuvers needed to satisfy the UC requirements. 

The team uses a 3-D physics based simulator for virtual testing. By using an RNDF file to create 
a world, the simulator provides a seamless way to perform the same tests in the field and in the 
lab. This compresses the debugging effort because scenarios observed in the field can be 
recreated in the lab. 

2. Introduction 
Team CajunBot consists primarily of faculty and students of the University of Louisiana at 
Lafayette. The team also has a member affiliated with the Air Force Institute of Technology, 
C&C Technologies, and the US Geological Survey; each of whom contributes his individual 
time. Team CajunBot’s vehicle CajunBot, a six-wheeled ATV, was a finalist in the 2004 and 
2005 DARPA Grand Challenge events. For the 2007 Urban Challenge (UC), the team has 
developed CajunBot-II on a 2004 Jeep Rubicon Wrangler platform (Figure 1).  

 

 
Figure 1:  View of CajunBot-II showing primary sensors 
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This document describes the technical approach used by Team CajunBot. Section 3 presents an 
overview of the all the hardware and the software architecture. Section 4 presents an overview of 
the software algorithm. Section 5 evaluates the system wrt UC requirements. 

3. Overview 
This section provides an overview of the entire system and, where appropriate, discusses the 
design choices underlying the decisions. 

3.1. Hardware Overview 

3.1.1. Automotive 
CajunBot-II is developed on a stock 2004 Jeep Wrangler Rubicon with three significant 
aftermarket alterations. First, the vehicle has been fitted with an electronic drive-by-wire system 
from Electronic Mobility Corporation (EMC) of Baton Rouge, LA. Second, the vehicle is fitted 
with two high-output alternators, each with maximum current output of 250 A. Third, the 
vehicle’s bumper and roof have been modified to provide mounting locations for sensors.  

3.1.2. Sensors 
CajunBot-II uses an RT3102 INS from Oxford Technology Solutions fed with a Starfire 
differential correction signal in RTCM format output by a C&C CNAV receiver. To bound the 
GPS errors, the INS also receives input from a TTL level optical wheel encoder. 

The design of the environment sensor configuration has evolved through three iterations. The 
current configuration consists of two Alasca XT LIDAR sensors from Ibeo (Fuerstenberg, 2002), 
three SICK LMS LIDAR sensors, and one AutoVue Lane Departure Warning (LDW) system 

 

 
Figure 2:  Sensor field of view 
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from Iteris (van dan Elzen, 2004). The Ibeo LIDAR sensors are mounted on the left and right 
edges of the front bumper offset ± 20°. One SICK LIDAR sensor is mounted on the center of the 
front bumper, scanning a horizontal plane parallel to the ground. The second LIDAR unit is 
mounted on the rear of the vehicle, in the place where a spare tire is normally mounted. This 
LIDAR also scans a horizontal plane parallel to the ground. The Iteris LDW is mounted on the 
windshield, inside the vehicle. 

Figure 2 shows the field of view of the three sets of sensors. The red region is the area viewed by 
Iteris LDW. It has a 40° FOV with a range of 6 m to 22 m. The LDW, originally designed to 
provide audible warning to the driver when the vehicle departs a lane, has been modified by 
Iteris to provide information about curvature of lane as well as position and orientation of the 
vehicle within the lane. The SICK LMS LIDAR sensors operate at 75 Hz and have a range of 80 
m with 180° FOV. Since the front and rear SICK LIDAR sensors are mounted to scan parallel to 
the ground, the two LIDAR units effectively see all around the vehicle, except the parallel region 
between the sensors. Each Ibeo LIDAR sensor has a 240° FOV, of which about 10° is occluded 
by the vehicle. Together the two LIDAR sensors cover about 359.1° around the vehicle, with an 
overlapping region in the front. These LIDAR systems operate at 16 Hz and have an effective 
range of 200 m. Unlike a SICK LIDAR sensor that shoots a single laser beam at a time, an Ibeo 
LIDAR unit shoots four simultaneous beams , thus covering a volumetric area (Fuerstenberg, 
2002),. An Electronic Computer Unit (ECU) manufactured by Ibeo can input the point cloud data 
from multiple LIDAR sensors and identify dynamic and static obstacles in the scene 
(Fuerstenberg, 2003),. 

CajunBot-II also has the capability to process data from Eaton radars. With the acquisition of the 
Ibeo LIDAR system, these radars have less significant. They are retained to provide additional 
information in the event that the Ibeo LIDAR sensors fail. 

3.1.3. Computers 
CajunBot-II has three computers referred to as Main, NTP, and Logger.  Each is a Single Board 
Computer in EPIC form factor with a 1.8 GHz Pentium M.  The Main computer is used for 
processing SICK LIDAR data, path planning, and steering.  The NTP computer provides the 
network time protocol service for the other computers.  The Logger saves all the data acquired 
during a run and also has the ability to broadcast the data over a wireless network. The Main and 
Logger computers run Fedora Core 5 (FC5). The NTP service, although light-weight, is provided 
by a separate machine because the PPS patch needed for NTP is available for the Linux 2.4 
kernel, and not for the Linux 2.6 kernel used in FC5. The Ibeo LIDAR system and Iteris LDW 
have their own computing units. All the computing devices, sensors, and other equipment 
communicate over the Ethernet, connected through a Gigabit Managed Switch from Dell. 

3.1.4. Emergency Control 
There are multiple mechanisms to take emergency control of the vehicle. As required by 
DARPA, the vehicle has two emergency stop buttons, one on each side of the vehicle. It has 
interfaces for the DARPA E-stop and also a wireless E-Stop from TORC technologies. Besides 
E-stop mechanisms, the vehicle also has two mechanisms to take manual control. The first 
mechanism consists of a console provided by EMC. This can be used by an operator inside the 
vehicle. The second mechanism is an RC controller, which allows one to remotely take control 
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of the vehicle, such as from a chase vehicle. Any of the wireless mechanisms can be deactivated. 
However, as a matter of additional precaution when a wireless mechanism is activated if its 
receiver loses communication with the transmitting device, the E-stop mode is automatically 
triggered and the vehicle is killed. 

CajunBot-II also has an additional hardware level safety mechanism to prevent a runaway 
vehicle in case the main computer fails or if the control software hangs. The Labjack D2A 
converter, which generates signals for the EMC drive-by-wire system, contains a watchdog 
timer. If the converter does not receive any signals within a specified time, it is programmed to 
move the EMC controls to pre-designated levels, which are currently set to aligning the steering 
straight, releasing the throttle, and pressing the brakes. 

3.1.5. Power management 
The power needs of the EMC drive-by-wire control system and vehicle electronics is met by one 
of the high-output alternators mentioned in Section 3.1.1. The second alternator generates power 
for all the computers, sensors, and other devices. This alternator feeds into two Absorptive Glass 
Mat (AGM) batteries, which then feed to DC-DC converters, before feeding the power to the 
electronics. CajunBot-II also has a 100 A 13.8 V DC Rack mount power supply for providing 
shore power, such as in the lab.  

3.2. Design Criteria for Software Architecture 
The CajunBot-II software architecture satisfies the following design criteria:  

Device Independence. There are multiple vendors for sensors, such as, GPS, INS, IMU, 
LIDAR, and so forth. The core algorithms of the system should not depend on the specific 
device. It should be possible to replace an existing device with another make/model or to 
introduce a new device while making only localized changes to the system.  

Algorithm Independence. Development of the system is an iterative process, which involves 
choosing between competing algorithms for the same task. It should be possible to develop each 
algorithm in isolation, that is, in a separate program, and switch the algorithm being used by 
selecting some configuration values. 

Scalability. The computational requirements of the system may vary as the system's design 
evolves. For instance, if CajunBot-II did not perform adequately with two LIDAR sensors and 
there was a need to add a third, it would require more computational power. It should be easy to 
add additional sensors and also seamlessly distribute the application on multiple computers. 

Off-line Testability. The definitive way to test an autonomous vehicle is to run it in the field. 
However, it is infeasible to test every change in each sub-module of the system by running the 
vehicle in the field. The system should enable off-line (in the lab) testing of various components 
and compositions of components. 

Ease of Debugging. To debug a system one needs access to internal data of the system. When 
debugging an AGV, it is most valuable if the internal data is available in real-time, when the 
vehicle is running. Debugging also requires performing the same operation over and over again, 
a process that is very expensive when done in the field. The system should support (1) real-time 
monitoring of internal state of its various components and also (2) the ability to replay the 
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internal states time-synchronized. The system should also support (3) presenting the data, which 
is expected to be voluminous, in a graphical form to enable ease of analysis.  

Composability. This criterion was not used in CajunBot, and was introduced for CajunBot-II. 
Since the UC requirements are inherently complex, it is obvious that the capabilities will be 
developed incrementally. For incremental development it is important to localize the effects of 
creating and removing modules.  Thus, it should be possible to create a complete or partial 
system by composing implementations of various capabilities. Creating modules that are 
composable would ensure that the project continues to move forward. 

3.3. Software Overview 
At the highest level a system’s architecture may be described by its major components and how 
data flows between them. We use two views to present the flow of information; Figure 3 shows 
the physical flow and Figure 4 shows the logical flow. The physical flow shows how the 
software components are distributed across computers. It also shows the mechanism for 
transporting data between components. The logical flow connects the producer of a data to its 
consumers, and hides the transport mechanism or the computing device. 

The major software modules of the system are Localization, Obstacle Detectors, Obstacle 
Fusion, Executive, and Navigator. These modules implement the AGVs intelligent control. The 
Obstacle Detectors is a collection of programs, one program for each different type of sensor. 
These are discussed in the next section. All other modules are considered Support Modules, and 
are described in this section. The Drivers, Simulator, and Playback modules are mutually 
exclusive, Figure 3. While the Drivers module provides an interface to a physical device, the 
Simulator, and the Playback modules provide virtual devices, as described below. Only one of 
the three modules can be active at any time. The mutual exclusion of the three modules is 
annotated in the architecture diagram by the walls between these modules.  

The physical flow of data is managed by CBWare, the CajunBot Middleware. 
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Figure 3:  Architecture showing the flow of information 
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3.3.1. CajunBot Middleware 
CBWare (Venkitakrishnan, 2006) provides the blackboard for communication between the 
modules. Each module is implemented as a collection of one or more processes. The processes 
may be concurrent—running on the same machine—or distributed—running on different 
machines. CBWare provides the mechanism to transport the data between processes, whether 
concurrent or distributed. Except for the properties of the data written to or read from CBWare, a 
module in the system does not need to know anything else about the module that has generated 
or will consume the data. Besides containing descriptors for the immediate situation, the 
CBWare blackboard also contains information about the system state, the AGV’s current activity 
context and goals, and also state information about the environment. An example of why this last 
category of information is needed shows up at intersections. The AGV must exhibit proper 
queuing behavior at an intersection. To achieve this, it must have a memory of which cars have 
reached the intersection after its own arrival. 

CBWare serves the same purpose as NIST's Neutral Message Language (NML) (Shackleford et 
al., 2000), Simmons & Dale's CMU-IPC (Simmons and James, 2001), or RTI's NDDS (Pardo-
Castellote and Hamilton, 1999), to cite a few middleware frameworks for real-time, distributed 
systems. A detailed comparison of CBWare with these systems may be found in 
(Venkitakrishnan, 2006). 
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Figure 4:  Architecture showing logical flow of information 
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3.3.2. Drivers 
Device independence is achieved by having a separate program, referred to as a Driver, to 
interact with a particular device. The Drivers are divided into two classes. The first class is 
Sensor drivers, which read input data from sensors, such as the INS and LIDAR sensors. The 
second class is Control drivers, which control devices, such as throttle, brakes, safety lights, 
siren, and indicator lights. 

Besides hiding the details of communicating with the device, a Driver also transforms the data to 
match the units and conventions used by the rest of the system. For instance, the CajunBot 
system measures angles in the anti-clockwise direction, with east as zero. If an IMU or INS uses 
any other convention for measuring angles, its corresponding device driver transforms angles 
from the device's convention to CajunBot's convention. Similarly, most GPS and INS equipment 
tends to provide vehicle position in latitude/longitude, which is translated by the driver to UTM 
coordinates, as used by the CajunBot system.  

3.3.3. Simulator  
Off-line testability is a direct outcome of device independence. Because the core algorithms have 
been disassociated from the other information processing modules, the data in the system does 
not have to interact with an actual device.  The algorithms can then easily interact with virtual 
devices and a virtual world. The Simulator module and the Playback module—which will be 
discussed later—create a virtual world in which the core algorithms can be tested in the 
laboratory. 

CajunBot's simulator, CBSim, is a physics-based simulator developed using the Open Dynamics 
Engine (ODE) physics engine. Along with simulating the vehicle dynamics and terrain, CBSim 
also simulates all the onboard sensors. It populates the same CBWare blackboard with data in the 

 

 
Figure 5:  Simulator showing detection of moving object 
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same format as the sensor drivers. It also reads vehicle control commands from the blackboard 
and interprets them to have the desired effect on the simulated vehicle. 

To simulate an urban environment, the simulator provides the ability to simulate traffic. Each 
vehicle in the simulated traffic is operated by a software agent whose behavior can be scripted 
externally. A simulated vehicle too occupies a 3-D space. Thus, the simulated sensors can ‘see’ 
these vehicles just as the real sensors will see vehicles in the real-world. Figure 5 shows a 
screenshot of visualizing the simulator. The black and red vehicle shows simulated CajunBot-II. 
The yellow segments denote simulated SICK LIDAR beams. The blue box is a simulated 
moving object, driven by a software agent.  

In many respects CBSim is like Gazebo (Gerkey, 2003; Vaughan, 2000) of the Player/Stage 
project. Both provide the ability to simulate the robot, the sensors, and the environment. Unlike 
Gazebo, however, CBSim uses an RNDF file to create the environment. The virtual objects in 
the environment are placed wrt to the RNDF file. CBSim also provides the ability to simulate 
traffic on the RNDF file. These capabilities, shown in Figure 5, make it much simpler to create 
virtual worlds for offline testing.  RNDF files created for the field can be directly used in the 
simulator.   

CBsim also provides us with the ability to perform batch testing. We utilize this capability in two 
ways. First, we periodically run the entire system through a large set of tests using automatically 
generated MDF files for DARPA’s Sample RNDF file. Such tests have helped us in identifying 
several special cases that we could not have found by our field tests (due to limited access to 
testing areas). Second, instead of merely creating nightly builds of the system, we also run some 
simple tests which help in finding integration errors.  

3.3.4. Playback 
Offline-testing and debugging is further aided by the Playback module. This module reads data 
logged from the disk and writes it to the blackboard. The order in which data is written is 
determined by the time stamp of the data. This ensures that all data is played back in the same 
relative order.  

This simple act of playing back the logged data has several benefits. In the simplest use, the data 
can be visualized over and over again, to replay a scenario that may have occurred in the field or 
the simulator. The Playback module also offers the ability to only replay the portions of a 
scenario that are useful for testing. In a more significant use, the Playback module can also be 
used to test the core algorithms with archived data. This capability was instrumental in helping 
us refine and tune our obstacle detection algorithms during the 2005 GC (Puntambekar, 2006). It 
is our common operating procedure to drive the vehicle over some terrain—such as during the 
DARPA National Qualifying Event—playback the INS and LIDAR data, apply the obstacle 
detection algorithm on the data, and then tune the parameters to improve the obstacle detection 
accuracy. 

3.3.5. Visualizer 
Real-time and off-line viewing is supported by CBViz, the Visualizer module. CBViz is an 
OpenGL based program that presents a graphical view of the world as seen by the system. It 
accesses the data to be viewed from blackboard. Thus, CBViz may be used for live visualization 
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of data during field tests and simulated tests, as well as visualizing logged data using the 
Playback module. 

Since communication between processes occurs using CBWare, CBViz can visualize data flow 
between processes. We have also found it beneficial to write to the blackboard data that is 
otherwise internal to a process. This capability has been essential to achieving the Ease of 
Debugging design criterion listed above. 

4. Overview of algorithms 
This section provides an overview of the algorithms used in the core modules: Localization, 
Obstacle Detectors, Obstacle Fusion, Executive, and Navigator. 

4.1. Localization 
In order to determine where the vehicle is and where it needs to go an AGV needs to know its 
location.  CajunBot-II contains myriad sensors which are capable of providing information about 
its position at any time.  While some of the sensors are designed specifically for determining the 
position of the AGV it makes sense to combine the information from the other sensors to create a 
more accurate position. 

The Oxford RT3102 INS includes three angular rate sensors (gyros), three servo-grade 
accelerometers, GPS receivers and a connection for wheel encoder data. The RT3102 uses a 
Kalman filter to combine the information from the three information sources.  Using the inertial 
sensors and differential correction signals, the RT3102 system generates position and orientation 
information in real-time at a fast update rate (100 Hz). The position estimate it outputs is 
accurate within 0.4 m accuracy under dynamic conditions and the heading accuracy is 0.1°. 

If the GPS signal were available and accurate all the time, then a separate localization algorithm 
would not be necessary.  Unfortunately, the GPS receivers have trouble when their view of the 
sky is impeded, or there are buildings nearby to produce echoes.  Since trees and buildings are 
common in most urban environments, we cannot expect the GPS to always be available, or even 
much at all.  The RT3102 incorporates an IMU sensor and wheel encoder to compensate for 
short GPS outages and improves upon the standard GPS solution when the GPS is available.  
However, the IMU information is relative to a previous state and any error present in a solution 
is propagated and usually magnified over time.  The wheel encoder data can help to mitigate this 
problem, but it only provides information about the distance traveled along the main axis of 
motion. 

To provide a more complete solution to the problem we expand upon the basic Kalman filter 
premise.  Localization algorithms of this type are common, but tend to be limited to a single 
prediction, single sensor type.  The Navigator module, discussed later, provides the information 
needed for a prediction.  While the information processed by the RT3102 system is not available 
separately it can still be combined with the information available from the SICK LIDAR sensor 
to create a more accurate solution. 

CajunBot-II contains three different types of sensors when examined from a localization point of 
view.  The first, and simplest, is the global type of sensor.  In this case the GPS gives a position 
which is irrespective of anything in or around the vehicle.  This type of sensor is very useful for 
containing the amount of error present in the localization of a robot, but can easily be disrupted.  
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The second type of sensor produces relative information about some aspect of vehicle motion.  
IMU sensors fall into this category.  These work well since they will always provide some 
information about the vehicle’s movement, but they will only sense information relative to a 
previous state.  In the case of IMU sensors, they provide information about accelerations and 
thus have two places where error will accumulate:  once when determining the velocities of the 
vehicle and once when determining the absolute position.  The third type of sensor observes 
something about the local environment or the vehicle’s interaction with the external world and 
uses this information to determine the robot’s movement.  This category includes cameras, radar, 
sonar, LIDAR, wheel encoders and many others.  These sensors generally suffer fewer problems 
than global sensors from occlusion, but instead accumulate error in position.  This puts them 
between global and relative sensors in terms of strengths and weaknesses. 

While using more information to make a decision generally leads to a better decision, by 
combining the information from these three types of sensors the problems inherent in using any 
one type can largely be canceled out.  In order to make our solution as accurate as possible, the 
type of information being obtained from the sensors has to be kept in mind when processing it.  
When the GPS is working the RT3102 system generates a prediction that has the properties of a 
highly accurate global sensor.  However, when the GPS information is not available to the INS 
system the resulting calculations must be treated as a largely relative source. 

The main Localization algorithm as described in Figure 6 implements a modified form of the 
KLD particle filter (Fox, 2003).  A previous particle is selected proportional to its weight.  That 
particle is then modified based on the expected effects of the commands given by the Navigator 
module.  That prediction is then compared to the output of the INS system.  The method of 
comparison is based on the availability of GPS data for the time step.  The prediction is then 
compared against the LIDAR data to obtain a final weight for the new particle.  The system then 
decides if it has created enough particles to make a decision for this time step. 

The CompareGps function uses the standard Gaussian probability formula to determine the 
likelihood of the given sample.  The CompareIns function uses the same theory, but compares 
the movement between the sample and the prediction to the expected value.  The expected value 

 
Localization (p_position, command,  
                       ins, lidar, p_lidar) 
{ 
    lidar_transformation = AlignLidar (lidar, p_lidar); 
    while (uncertain) 
    { 
        y = Select (p_position); 
        x = Predict (a, command); 
        if (gps) 
            w = CompareGps (x, ins); 
        else 
            w = CompareIns (x, y, ins, p_movement); 
        w += CompareLidar (x, y, lidar_transformation); 
        position += {x, w}; 
        uncertain = !Enough (position); 
    } 
    return Choose (position); 
} 

AlignLidar (lidar, p_lidar)
{ 
    while (error > threshold) 
    { 
        foreach point in lidar 
        { 
            find closest point x; 
            find matching range point y; 
        } 
        compute least-squares solution < > for all x 
        compute least-squares solution <  for all y 
        Update (lidar, < > ); 
        Update (solution, < >); 
        error = CalculateError (lidar, p_lidar); 
    } 
    return solution; 
} 

 
Figure 6: Pseudocode for Localization (Fox, 2003) and AlignLidar (Lu, 1997) 
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is calculated by using the movement of the previous cycle combined with the acceleration data 
provided by the IMU sensors. 

The comparing a position with a LIDAR scan is more complicated since the LIDAR sensors do 
not directly indicate anything about the position or movement of the vehicle. Instead the LIDAR 
sensors tell the system about the relative location of other objects in the world.  To turn this 
information into knowledge about the AGV’s position, two successive range scans are compared 
to determine the transformation which when applied to the first range scan will produce the 
second. For this part we utilize the algorithm described by (Lu, 1997) for aligning range scans.  
Once the range scans are aligned, it is simple to compare the predicted movement to the results 
from the range scan alignment. 

The pseudocode for AlignLidar in Figure 6 details how to determine the movement that occurred 
between two LIDAR scans.  The algorithm is iterative, so it is repeated until the result is 
considered sufficiently accurate for use.  At each iteration, two different algorithms are applied 
to determine the transformation that occurred between them.  The first is a basic closest-point 
algorithm which picks the nearest point to associate a given point to.  This method prefers to 
vary the translation of the scan to make them overlap.  The second method tries to select a point 
that is within the same range and prefers to vary the angle of rotation.  The least-squares solution 
is calculated for each algorithm separately.  To determine the final solution for the iteration, the 
translational component is taken from the closest-point algorithm, and the rotational component 
is taken from the matching-range algorithm.  This is then compounded with the previous 
solutions and a new error is calculated. 

4.2. Obstacle Detectors 
There are a variety of sensors available to detect dynamic and static obstacles. We have 
experimented with SICK LMS LIDAR sensors, Ibeo Ithaca XT LIDAR sensors, stereo vision 
cameras, and radars. The algorithm used to analyze a sensor’s data to extract obstacle 
information is intrinsically tied to the type of sensor being used. Further, there are often multiple 
algorithms used for the same sensor. 

Manufacturers of some sensors, such as the Ibeo LIDAR sensors (Fuerstenberg, 2003) and 
radars, provide components that process the raw sensor data and provide obstacle information. 
For such a sensor, the sensor driver is the obstacle detection program. There are also sensors, 
such as the SICK LMS LIDAR sensor or stereo vision camera, for which there are no readily 
available programs, whether from a manufacturer or from a third party, for extracting obstacle 
information from the sensor data. For such sensors we need to write our own obstacle detection 
programs. 

We have developed algorithms for obstacle detection using SICK LMS LIDAR units 
(Puntambekar, 2006). The algorithm we used in the 2005 GC was very robust, producing no 
false obstacles even though CajunBot, the six-wheeled ATV, had no suspension and hence no 
stabilization of sensors. While our algorithm produces very reliable results, it is not adequate for 
the UC for two reasons. First, the 80 m range of the SICK LMS sensors is inadequate for 
meeting the UC requirement of pulling into a 10 s gap in traffic when vehicles are traveling at 
13.4 m/s (30 mi/hr).  

To fulfill this requirement we are employing two Ibeo LIDAR sensors in a single array 
(Fuerstenberg, 2002).  The Ibeo LIDAR sensors have a range of 200 m so they are easily able to 



 

© University of Louisiana at Lafayette Page 12 6/1/2007 

cover the 134 m range needed for the traffic merging requirements.  They are laid out in such a 
way that they cover the majority of the area around CajunBot-II (Figure 2).  However, the 
configuration leaves a small blind spot directly in front of the vehicle and a continuous blind spot 
behind the vehicle.  The front area is covered by a single SICK LIDAR sensor.  Because the rear 
region does not require long range visibility it can also be covered by a SICK LIDAR sensor. 

In order to integrate well with the Ibeo sensors we implemented an algorithm similar to the one 
used by the Ibeo processing system to analyze the SICK LIDAR data.  This algorithm uses a 
basic Kalman filter to predict the position of an object based on its previous actions and melds 
that information with the information observed by the SICK LIDAR sensors. 

Before any of the information acquired from the sensors can be used for higher level functions it 
is transformed into a common set of data structures.  This design also helps to mitigate the cost 
of utilizing a myriad of different sensor types, allowing us to experiment with new technologies 
and algorithms as they become available. 

4.3. Obstacle Fusion 
In order to make decisions about the world, a system needs to have a unified information system 
that details everything that the system needs to know about its environment.  For the UC, one of 
the most important things for the AGV to know about its environment is the presence of and 
expectations about objects in the world. 

Because we have the ability to utilize multiple sensors to detect obstacles; the information from 
each sensor must be synthesized to create a single belief about the actual state of the world 
outside.  This Obstacle Fusion module also helps to meet the ‘sensor independence’ design 
criteria.  The main objective for the Obstacle Fusion module is to allow the Executive module to 
be independent of any effects of a sensor type. 

The most basic method for fusing the obstacle information is to simply take all the obstacles 
detected by the various systems and combine them into one big conglomeration.  This method 
can work effectively when extremely high quality sensors are available, or all possible 
processing on the sensor information has been done before the obstacles are fused.  
Unfortunately, all sensors have some error with their results and to perform every possible 
mechanism to clean up the sensor data is far from feasible. 

To improve on the basic method, we could employ a daisy chain algorithm which only believes 
the most accurate sensor unless that sensor becomes faulty.  The daisy chain method keeps the 
Executive module from being plagued with false returns, but creates gaps in the places where a 
less reliable sensor is more accurate. 

Regrettably, all sensors suffer from some type of error.  Cameras are susceptible to changes in 
lighting and light refraction.  LIDAR sensors have trouble detecting black objects.  Radar sensors 
often miss objects that are not moving relative to the sensor.  Virtually all sensor systems have 
problems with a reflected signal of some form.  Fortunately, the majority of weaknesses are 
limited to a single type of sensor.  This means that by employing the information from multiple 
sensors dynamically it is possible to compensate for the weaknesses of any one sensor type.  
Thus we can use radar to detect black cars on the road, or a LIDAR sensor to find objects in 
partial shade. 
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To perform the Obstacle Fusion we use a probabilistic method that is sensitive to the dynamic 
changes in the world and is knowledgeable about the various sensor types that are providing 
information.  A basic example of this type of algorithm would simply combine the obstacles and 
weight them based on the accuracy of the sensor.  This allows objects seen by multiple sensors to 
be rated very highly, and objects seen by only a single sensor to be rated as unlikely.  We expand 
on this method to work dynamically with the responses given by the various sensors.  An 
example of how this works is in the case of combining LIDAR and radar information:  A LIDAR 
sensor rarely produces spurious results, but in the case of a dark or clean car the laser beam can 
be lost.  So, if we want to combine the radar data with the LIDAR data we can decide to only 
give a high weight to a mismatched radar signal if the LIDAR beam does not have a return. 

While any set of rules about the sensor system interactions will have problems in certain areas, 
the set can be made sufficiently complex to compensate for most of the inconsistencies between 
sensors leaving a highly accurate amalgamation of obstacles. 

4.4. Executive 
The Executive module is responsible for the intelligent control of the vehicle.  It provides the 
control, sequencing, and deliberative aspects of the classical 3-layer architecture (Gat, 1998). But 
the specific method of decomposition used is different. In our architecture, the first layer 
provides the capability for the vehicle to travel without any obstacles. The second layer consists 
of augmenting the first layer to introduce the ability to handle static obstacles. The third layer, 
again developed by augmenting the second layer, introduces the ability to perform in traffic and 
to respond to unexpected scenarios. 

The Executive module generates a Trail, a sequence of waypoints annotated with speed, to guide 
the vehicle towards its mission. The actual task of following the Trail is performed by the 
Navigator module. The Executive module reads the following from the blackboard: vehicle’s 
state from localization, the obstacle information obstacle fusion, the lane information from 
LDW, the RNDF, and the MDF file. It writes the Trail to the blackboard for the Navigator to 
follow. 

The pseudocode of Figure 7 and Figure 8 describe the underlying logic. In UC terminology a 
mission, given in an MDF file, is a sequence of checkpoints. The AGV must visit each 
checkpoint in the specified order. To compute the Trail the algorithm computes a Path and a 
Maneuver plan. A path is largely a sequence of RNDF waypoints. A maneuver plan is a 
sequence of instantiated maneuvers. A maneuver is a tactical operation that advances the vehicle 
in a specific situation. The maneuvers needed to meet the UC requirements are: follow the lane, 
change lane, pass vehicle, navigate intersection, three-point turn, navigate in free zone, pull-in-
parking spot, pull-out-of-parking spot, and wait.  
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The first step in executing a mission, see ExecuteMission of Figure 7, is to construct an RNDF 
graph from the RNDF. Each waypoint in the RNDF becomes a node in the RNDF graph. Five 
types of edges are added in the RNDF graph during initial construction. These are same-lane 
edge, change-lane edge, intersection edge, free-travel edge, and parking edge. A same-lane edge 
is added from a waypoint in a lane to the next waypoint in the same lane. A change-lane edge is 
added from a waypoint in a lane to the next waypoint in another lane, where both lanes are 
traveling in the same direction. An intersection edge is added from an exit waypoint to its 
corresponding entry waypoints.  The free-travel edge and parking edge represent navigation in 
the free zone. For navigation on the road when there may be more than one type of edge between 
a pair of nodes, the edge with the highest precedence is added, where an intersection edge has the 
highest precedence, and is followed by change-lane edge, which is followed by same-lane edge. 

The RNDF graph and the static obstacles are then used to update the rndf_graph, see UpdateRndf 
of Figure 7. Static obstacles are objects that are not expected to move. In contrast, a dynamic 
obstacle is one that may move. A vehicle stopped at the intersection is a dynamic obstacle since 
it may move. When updating RNDF graph the dynamic obstacles are ignored. The presence of 
static obstacles on the route is accounted in two ways. First, each RNDF edge that traverses 
through an obstacle is marked as blocked. Second, three types of (temporary) edges, pass-
vehicle, u-turn, and reverse are added to represent alternate edges to the blocked edges. These 
edges are temporary in that they are removed by ResetRndf after each iteration of 
ExecuteMission. A temporary edge is added only if all out-going edges from a node are blocked 
by static obstacles. The pass-vehicle edge represents going around the obstacle by traveling on 
the oncoming lane to pass a vehicle. The u-turn edge represents making a u-turn. The reverse 
edge represents simply driving the vehicle in reverse. These edges are also added only if the 
paths they traverse are free of static obstacles. It may not always be optimal for these alternate 
edges to be between RNDF waypoints. Thus, adding an edge in the RNDF graph may also 
require adding new nodes. For instance, when a same-lane edge is blocked, it may be replaced by 
a pass-vehicle edge. In some situations it may not be possible to satisfy UC constraints on 
passing a vehicle by adding a pass-vehicle edge between RNDF waypoints; requiring 
introduction of new waypoints. These details are not pertinent to understand the overall 
algorithm. 

 UpdateRndf (rndf_graph) 
{ 
  mark edges blocked by static obstacles; 
  foreach (node in rndf_graph) 
    if all outgoing edges of node are blocked 
       by static obstacles then 
    { 
         // add temporary edges 
        add a ‘pass-vehicle’ edge, if feasible; 
        add a ‘u-turn’ edge, if feasible; 
        add a ‘reverse’ edge, if feasible; 
    } 
   } 

 
ExecuteMission (rndf, mission) 
{ 
    construct rndf_graph from rndf 
    repeat  
    { 
         UpdateRndf (rndf_graph); 
         path = FastestPath (rndf_graph, mission); 
         maneuver_plan = PlanManeuvers (path); 
         ResetRndf (rndf_graph); 
    } until (ExecuteManeuvers (maneuver_plan)) 
} 
 

 
 Figure 7: Pseudocode of ExecuteMission and PlanPath 
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The updated RNDF is then used to compute the Path—the fastest path from the current location 
of the vehicle to the mission. To compute the fastest path each original RNDF edge is annotated 
with the time estimated to travel the distance between its end-points at the speed designated in 
the MDF, except that the edges blocked by static obstacles are given infinite time. The time 
associated to the temporary edges—pass-vehicle, u-turn, and reverse—takes into account the 
need to stop the vehicle, to wait for traffic, and to complete the maneuver. 

After computing the Path, function PlanManeuvers of Figure 8 is used to compute the Maneuver 
Plan. This plan is computed strictly using the Path. The function uses a ManeuverList, which is 
the list of all maneuvers. The for-loop in the pseudo-code finds a maneuver that can be applied 
on the Path.  Associated to each maneuver is a StaticCondition, a condition on the Path that must 
exist for the maneuver to be applied. For example, the change-lane maneuver may only be 
applied between nodes connected by a change-lane edge. Or the intersection maneuver may be 
applied when there is an exit node followed by an entry node in the path. Once a maneuver is 
selected, it is instantiated with the specific properties of the path and placed in the Maneuver 
Plan. The path consumed by the maneuver is removed and the process repeated until the path is 
empty. The collection of maneuvers is such that for any Path generated by PlanPath the complete 
path can be consumed. This is tautologically achieved by the wait maneuver which is always 
applicable and which consumes the entire path. The wait maneuver is the last to be tested in the 
list of maneuvers. 

The final step of executing a mission is to execute the maneuvers. This is done by function 
ExecuteManeuvers of Figure 8. It is possible that the vehicle has learned about more static 
obstacles in the environment since the time the maneuver plan was created. If these obstacles 
may interfere with the execution of any maneuver in the plan, the function ExecuteManeuvers 
fails. This failure triggers the repeat-until loop in ExecuteMission to be repeated, thus creating a 

 PlanManeuvers (path) 
{ 
  // ManeuverList is a list of all maneuvers 
  maneuver_plan = empty; 
  while (path != empty) 
   { 
      found = false; 
       // find a maneuver that can be applied 
      for (maneuver in ManeuverList) 
           if (maneuver.StaticCondition (path)) 
            { 
               found = true; 
               break; 
            } 
      // one maneuver must apply 
      assert (found); 
      // instantiate maneuver for path 
      mi = maneuver.Instance (path); 
      path = mi.ConsumePath (path); 
      put mi in maneuver_plan; 
   } 
    return maneuver_plan; 
} 

ExecuteManeuvers (maneuver_plan) 
{ 
   while (maneuver_plan != empty) 
   { 
       mi = first in maneuver_plan; 
       if (mi.completed) remove mi from maneuver_plan; 
 
       // are (new) static obstacles blocking trail 
       for (mi in maneuver_plan) 
        { 
            if mi.trail is blocked by static_obstacles then 
                // cannot execute plan 
               return false; 
           else 
                // account for dynamic obstacles 
               mi.UpdateTrailSpeed(); 
        } 
        // progress the maneuver 
        publish entire trail to the blackboard; 
    } 
   // plan executed 
   return true; 
}  

Figure 8:  Pseudocode of PlanManeuvers and ExecuteManeuvers 
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new Path, a new Maneuver plan, etc. On the other hand if a Maneuver Plan can be executed, the 
function UpdateTrailSpeed of the selected maneuver is called. This function sets the speed by 
taking into account the dynamic obstacles in the environment. The method for setting the speed 
will depend on the maneuver. For example, if a vehicle is observed to be traveling in front then 
at a certain point on the trail the follow-the-lane maneuver sets the speed to be the minimum of 
the RNDF speed and the speed of the vehicle in front. On the other hand, the navigate 
intersection maneuver, when making a left turn, sets the speed to zero if there is a moving 
vehicle whose trajectory may intersect with its trail. When there is no such vehicle and all other 
traffic rules have been satisfied, the trail speed is set to the max speed permitted. When the 
intersection is filled with moving vehicles, after waiting for sometime, the navigate intersection 
maneuver may set a very slow speed (leading to the Taxi Cab algorithm). Finally, when 
ExecuteMission finds that all the maneuvers can be performed, it publishes to the blackboard the 
concatenated trail of all the maneuvers. At the beginning of the loop, if a maneuver is completed 
it is removed from the list. 

There are two more issues to address. a) How does the vehicle stay within the same lane when 
the curve represented by a sequence of waypoints does not represent the curve of the lane? How 
does the vehicle pass a static object in a free zone or on a segment with only one lane? 

The issue of staying within the lane is addressed by how a trail is computed. Each Maneuver is 
defined by a sequence of waypoints. Only the last waypoint is explicitly put on the trail. The 
intermediate waypoints are used to compute a curve representing a RNDF lane. In addition, there 
is also the ‘observed’ lane as reported by Iteris LDW (van dan Elzen, 2004). The two lanes are 
fused to create a single lane. Higher precedence is given to the observed lane. When observed 
lane is not available, the RNDF lane is used. Discontinuities due to switching between different 
sources of lanes are smoothened by interpolation. A maneuver planner uses the fused lane as the 
trail. 

The issue of passing a static obstacle in a free zone or in a single lane segment is also addressed 
by manipulating the trail. The corresponding maneuver manipulates the trail, moving it left or 
right, such that it no longer intersects with the obstacle (Trepagnier, 2006). The trail is then 
smoothened such that the path can be navigated by the vehicle. In general, this method of 
tweaking the trail is also used when the maneuver plan returned by PlanManeuvers contains only 
the wait maneuver. When the vehicle is traveling on a tweaked trail its speed is set very low, 
based on the distance to obstacles around it. 

4.5. Navigator 
The Navigator module takes as input the Trail computed by the Executive module. It is 
responsible for driving the vehicle along the sequence of waypoints in the Trail, keeping the 
vehicle as close to the given path as possible, while also maintaining the speed specified in the 
Trail. The Navigator uses a lead-lag compensator controller for controlling the vehicle’s steering 
(Hingwe, 1998) and a PD controller for controlling its throttle and brakes. 

Figure 9 illustrates the parameters influencing the steering controller. The steering controller 

projects a steering-target point1, s, in front of the vehicle and computes the steering position, , 

                                                 
1 It is called look-ahead point in the literature on steering controller (Hingwe, 1998), a term that leads to ambiguity 
in the context of obstacle detection. 
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that would minimize the lateral displacement, , of the steering-target point from the desired 
path. The distance from the vehicle’s center of gravity to the steering-target point is called the 

steering-target distance, . The transfer function from steering angle to lateral acceleration of 
the steering-target point is given as (Hingwe, 1998): 
 

 
  
where: 

  = Steering angle 

  = Lateral displacement of the virtual point 

  = Road adhesion factor (from 1 to 0) 

  = Cornering stiffness of the front tires 

  = Cornering stiffness of the rear tires 

  = Length from the front axle to the center of gravity of the vehicle 

  = Length from the rear axle to the center of gravity of the vehicle 

    =   

      = Linear velocity of vehicle (speed) 

      = Mass of the vehicle 

      = Instantaneous yaw rate of the vehicle 

      = Steering-target distance 
 

These parameters are illustrated in Figure 9. 
 

Applying the Laplacian integrator 1/s to the transfer function twice, we arrive at the transfer 
function between steering angle and lateral displacement of the virtual sensor. Using this transfer 

 

 
Figure 9 Illustration of parameters of the steering controller (Guldner, 1997) 
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function and a unity feedback (assuming the sensor makes little or no changes to the 
measurement) the control law can be derived. Using the root locus approach, a lead-lag 
compensator can be designed.  

One drawback to this method is that during derivation of the control law, it does not provide a 
direct method to compensate for delays in the system. This is unfortunate as a .24 s transport 
delay is present within the steering actuation of CajunBot-II. However, when added to the 
system, a delay only serves to decrease settling time and oscillation to a small extent and does 
not affect its overall stability.  

Three significant modifications were made to the control law in the actual implementation, as 
elaborated below. 

First, the gains of each term as established in the mathematical derivation are inaccurate due to 
the inaccuracies of the constant values used in the original equations, as well as delays in the 
system, and other characteristics caused by the digital implementation of the controller. Because 
of this, the gains are instead shown as variables and used for tuning. In our derived control law 
tuning becomes very easy because the control law approximates a PD controller.  

Second, the steering-target distance is computed dynamically as a function of the vehicle’s 
speed. What may be counter-intuitive, this distance increases at slower speeds. A speed plan 
generates slower speed when the path has a greater lateral acceleration. The longer steering-
target distance compensates for the steering delay of 0.24 s, thus preparing for the vehicle to turn 
ahead of time. On the other hand, at higher speeds a small change in the steering angle leads to 
larger change in the lateral displacement (for the same time interval). That is, the steering is more 
sensitive at higher speeds. A smaller steering-target distance at higher speeds ensures that the 
system generates gentle changes. 

Third, the method for computing ys, the lateral displacement, of the steering-target point was 
modified. Figure 9 shows ys, computed as the distance from the steering-target point to the path, 
measured perpendicular to the vehicle’s heading. When the vehicle is oriented near 
perpendicular to the path, such as at an intersection, the lateral displacement computed would be 
infinite, leading to an unpredictable behavior.  While the Executive module generates smooth 
paths through the intersection, for reliability and to achieve algorithm independence it is 
important that the steering controller not misbehave if the Executive makes an error. One 
solution to this problem is to use a line perpendicular to the path segment to calculate the virtual 
sensor’s lateral displacement. However, this too becomes troublesome as this can have multiple 
solutions and its computation is more complex. We use the following method for determining the 
lateral displacement. The steering-target point is determined by the normal method; however a 
second point, vehicle track point, is determined. This point is set by tracing the length of the 
steering-target distance along the vehicle’s projected path. An example would be: if the steering-
target distance is 3 m, then the steering-target point is 3 m in front of the vehicle, and the vehicle 
track point is 3 m along the path from the vehicle’s projected position on the path. The distance 
between the vehicle-target point and the vehicle-track point is taken as the lateral displacement. 
For small heading errors, the difference in vehicle’s heading and the path orientation, this 
computation yields values close to those from the previous method. However, when the heading 
error is large the new computation yields a stable solution. This method is also immune to 
variations in the path shape.  
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5. Evaluation 
The performance evaluation of the system is presented along two dimensions: analytic and 
quantitative.  The analytic evaluation verifies whether all the UC requirements are addressed by 
the system. The quantitative evaluation presents pertinent data gathered from observing the 
vehicle perform in the field. 

5.1. Analytical Evaluation 
Let us consider the Base Capability to be the ability of the vehicle to complete a full mission 
following the necessary rules, when there is no other vehicle on the road, there is no blocked 
road, the RNDF has sufficiently dense waypoints, the waypoints are accurate, and there is no 
GPS error. 

It is straightforward to see that CajunBot-II has the Base Capability using only the INS, the 
Executive, and the Navigator. The INS will provide accurate localization information. Since 
there are no obstacles, the path generated by the Executive will simply be the fastest path on the 
RNDF graph. The eight maneuvers of the Executive address all the capabilities needed: traveling 
on a lane, changing lane, traveling through intersections, stopping at stop sign, turning into 
appropriate lane, traveling in free zone, making a U-turn, pulling in parking, and pulling out of 
parking. Since the waypoints are dense and accurate, the trail generated by each maneuver will 
be within the lane. Finally, the Navigator is capable of following a trail and significant speeds. 

Having argued that CajunBot-II has the Base Capability, one can now evaluate the remaining 
capabilities required for the requirements in the UC Rules2: Basic Navigation, Basic Traffic, 
Advanced Navigation, and Advanced Traffic. Each of these requirements builds upon the 
previous one by introducing additional complexity. The complexity introduced by each 
requirement and how they are addressed by our system is described below. 

The Basic Navigation Requirement contains the ability to negotiate static obstacles on the road. 
The Ibeo LIDAR system provides the capability to detect obstacles around the vehicle and the 
rear SICK LIDAR unit covers the area immediately behind the vehicle. At 13.5 m/s (30 mi/hr) 
CajunBot-II can come to a smooth stop within 20 m. The Ibeo LIDAR sensor’s 200 m range is 
more than more than five times the range needed for the vehicle to stop 8 m away from the 
vehicle. The Executive module has the ability to compute path when a lane is blocked. As per the 
Rule the obstacles are not expected in the intersections. Thus, only the pass-vehicle maneuver 
needs create the correct trail to satisfy this requirement. However, if for some reason the vehicle 
stops too close to the obstacle, the reverse maneuver provides a way to create a clearance. The 
rear LIDAR sensor provides the ability to look at the back when reversing. Thus, our system has 
the ability to address the Basic Navigation Requirement. 

The Basic Traffic Requirement includes the ability to follow a moving vehicle, to observe 
queuing behavior at an intersection, and to follow intersection precedence. The Ibeo LIDAR 
system provides the velocities of moving objects in its FOV. The velocities are provided along 
two axes. These sensors also provide the ability to track objects. Thus, the system has the ability 
to sense the conditions needed to satisfy the Basic Traffic Requirement. The necessary 
functionality can be introduced by appropriate encoding of UpdateTrailSpeed of the follow-the-

                                                 
2 Available on www.darpa.mil/grandchallenge 
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lane maneuver and the intersection maneuver. By controlling the speed of the trail these two 
maneuvers can satisfy the Basic Traffic Requirement. 

The Advanced Navigation Requirements adds the following capabilities: travel in a free zone 
with static obstacles, dynamic re-planning when the roads are blocked, following road with 
sparse waypoints, and dealing with intermittent loss of GPS.  Mechanisms to implement these 
capabilities are traced below. 

Due to the absence of lanes in a free zone, passing an obstacle there is different from a similar 
operation on the road. The path to be followed cannot be found by searching the RNDF graph. 
The concept of a trail and the ability of a maneuver to update the trail in each iteration provides 
the structure needed to introduce the necessary algorithm. The algorithm used by (Trepagnier , 
2006) may be used for twaking the trail to pass an obstacle. The Ibeo LIDAR sensors’ 200 m 
radius range covers a large enough area, and sufficient information to alter the trail to pass 
obstacles much before coming close to the vehicles. To further prevent any mishaph, the vehicle 
will travel very slow through a free zone. 

Dynamic re-planning does not require anything more in the Executive. The necessary 
capabilities follow directly from how the Executive recomputes the path when a trail thought to 
be free is found to be blocked. The replanning algorithm is greedy, it replans the path as soon as 
the sensors detect that the road is blocked. Thus, if while planning to turn into an intersection the 
sensors detect that the road is blocked 50 m down, the vehicle will replan a path and alter its plan 
of turning into the intersection.  

Sparse waypoints are expected when following the lane and are handled by the follow-the-lane 
maneuver. This maneuver uses the lane curvature information provided by the Iteris LDW, when 
available, to generate a trail. It uses the waypoints in the path computed by the Executive only 
when no lane information is available. This same capability also enables the vehicle to navigate 
when the waypoints in the RNDF are inaccurate.  

Method used for addressing GPS outage is addressed in Section 4.1. 

Thus, our system has the ability to address the Advanced Navigation Requirement. 

The Advanced Traffic Requirement adds the capabilities to deal with traffic in the free zones and 
to deal with traffic at intersections that do not have four-way stop. It also adds the requirements 
for dealing with exceptional situations such as traffic jam and erratic behavior of other vehicles. 
Once again the necessary functionality to deal with traffic in both the scenarios can be 
introduced by appropriate encoding of UpdateTrailSpeed by intersection maneuver and the 
navigate-through-free-zone maneuvers. Exceptional situations due to moving vehicles, whether 
in traffic jam or other situations, too are handled by appropriate encoding of UpdateTrailSpeed. 
This describes our mechanisms to address the Advanced Traffic Requirement. 

Thus, our sensors provide the information needs of all the UC requirements. And our software 
design provides the structure needed to address all the UC requirements. 

5.2. Quantitative Evaluation 
The system is still under development. Implementation of the Base Capability was completed in 
March, 2007; the capabilities for Basic Traffic completed in May, 2007; and the capabilities for 
Advanced Traffic are nearing completion. The results of system and field tests of these 
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capabilities were tracked and are discussed below. The extensive unit and integration tests 
performed during the development were not tracked, and are not reported. 

Table 1 Summary of system and field tests 

  Runs (#) Distance (km) Speed (m/s) 
  Total < 0.5 km > 0.5 km > 1 km Total Longest Median Max 

Base               
Cajun Field 20 5 15 11 46.60 9.65 3.64 10.91 

EVOC 31 9 22 11 55.20 31.80 7.42 17.62 
Basic Traffic                 

Ev. Downs 103 55 48 22 98.08 17.78 4.43 14.51 
Total 154 69 85 44 199.88    

As the discussion above showed, the Base Capability forms the foundation of the system. Once 
the Base Capability is developed other capabilities may be introduced by making local changes 
to individual maneuvers. Thus, our system tests on completion of the Base Capability have been 
very thorough.  The tests were performed in two parts. First, the system was tested in the Cajun 
Field parking lot of UL Lafayette. Second, a field test was performed in the Emergency Vehicle 
Operation Center (EVOC) of Louisiana State Police in Zachary, LA. This facility has a network 
of roads simulating all types of roads—from dirt roads, to neighborhood roads, to highways. 
Upon completion of the Basic Traffic capabilities the system tests were performed in the parking 
lot of the Evangeline Downs race course in Carencro, LA. 

Table 1 provides a summary of the system and field tests. The 20 test runs in Cajun Field 
accumulated a distance of 46.6km, with a majority of the runs greater than ½ mile. The longest 
run was 9.65 km (6 mi). The median of the average speed for these runs was 3.64 m/s (8.14 
mph); whereas the maximum speed reached by the vehicle in these runs 10.91 m/s (24.4mph).  
The successful completion of a 6 mi was set as a precondition for proceeding for the field test in 
EVOC. The field test in EVOC accumulated 55.20 km over 31 runs, with the longest run being 
31.80 km (19.75 mi). During the field test the median of the average speed of the runs was 7.42 
m/s (16.5 mph). The absolute (not average) maximum speed reached by the vehicle in EVOC 
was 17.62 m/s (39.42 mph). 

The system and field tests data of the Base Capability show that CajunBot-II has the endurance 
necessary for being a strong contender in the UC. It can steer well, and can plan and control 
speed over long distances. The vehicle can attain the maximum speed recommended for UC 

A significantly more number of system tests were performed after the completion of the Basic 
Traffic capabilities, though a majority of them were under ½ km long. Each test was performed 
to evaluate the ability of the vehicle to detect and avoid obstacles placed at specific locations in 
the RNDF. Due to the effort needed to tear down and setup the obstacles, the tests were of short 
length. The endurance run during this tests was 17.78 km and the maximum speed attained by 
the vehicle was 14.51 m/s (32.46 mph). 

6. Summary 
CajunBot-II is well on its way to become a strong contender in the UC. The vehicle has the 
electronics and sensors needed to address all the requirements. It has the power generation 
capacity necessary to run the computers and electronics for an extended period of time. Its 
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software system has the ability to utilize multiple environment sensors, including, LIDARs, 
radars, and cameras. Data from individual sensors is analyzed independently, and then fused. 
The fusion algorithm takes into account the reliability of each sensor in a particular context. The 
planning component of the software system consists of three layers, developed incrementally. 
The foundation layer provides the ability to complete a course in the absence of any obstacles. 
The second layer provides the ability to navigate around static obstacles. And the final layer 
provides the ability to work safely in traffic. The ability to follow a lane is the primary means of 
traveling on the road. Thus, the vehicle does not need very accurate or dense waypoints for 
navigation. The control system can track a path very accurately even at high speeds. The entire 
system integrates well to fulfill all the requirements of the UC. 
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